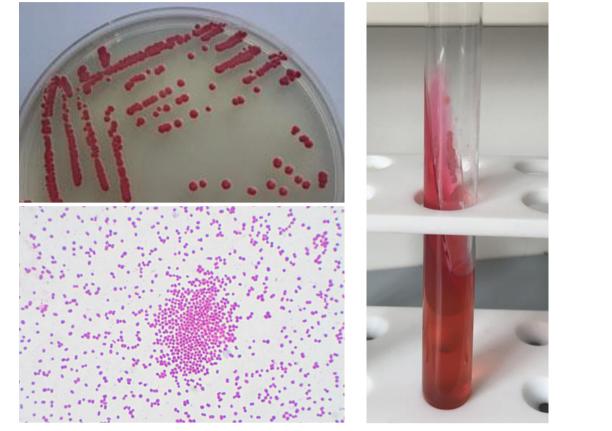
# PRESENCE OF BACTERIUM ACINETOBACTER BAUMANNII IN WASTEWATERS OF THE CITY OF ZAGREB

Jasna Hrenović<sup>a</sup>, Ivana Goić-Barišić<sup>b</sup>, Snježana Kazazić<sup>c</sup>, Blaženka Hunjak<sup>d</sup>, Draženka Stipaničev<sup>e</sup>, Siniša Repec<sup>e</sup>, Marin Ganjto<sup>f</sup>

<sup>a</sup>University of Zagreb, Faculty of Science, Department of Biology, Zagreb, Croatia; <sup>b</sup>University Hospital Centre Split, Department of Clinical Microbiology and University of Split School of Medicine, Split, Croatia; <sup>c</sup>Ruđer Bošković Institute, Division of Physical Chemistry, Zagreb, Croatia; <sup>d</sup>Croatian Institute of Public Health, Zagreb, Croatia; <sup>e</sup>Croatian Waters, Zagreb, Croatia; <sup>f</sup>Zagreb Wastewater - Management and Operation Ltd., Zagreb, Croatia

#### Background:

Acinetobacter baumannii is an emerging hospital pathogen causing outbreaks in Croatia since 2002 and is still present in Croatian hospitals [1]. Clinical isolates of *A. baumannii* in Croatian hospitals are usually multi-drug resistant (MDR), with resistance to carbapenems dramatically increasing from 10% in 2008 to 82% in 2014 [2].


MDR *A. baumannii* has been isolated from patients, hospital environment during outbreaks, and hospital wastewater in Brazil and China [3,4]. However, crucial questions regarding its epidemiology remains incompletely understood [5]: are the infected patients and hospital environment the only sources of *A. baumannii*, at which extent *A. baumannii* are released from hospitals in nature, do they survive or even multiply in nature, do they have natural habitat outside hospitals.

#### Material/methods:

Sampling of hospital wastewater was performed on 2 occasions in 2015 at the central manhole of one Zagreb's hospital from which the clinical isolates of *A. baumannii* were recovered. Sampling of municipal wastewater was performed on 6 occasions in 2014/15 at the influent and effluent of the central Zagreb's wastewater treatment plant. This secondary type of wastewater treatment plant receives wastewaters of all 9 clinical hospitals in Zagreb.

Concentration of carbapenems in wastewater was measured ultra-high performance by liquid chromatography - quadrupole time-of-flight mass spectrometry (6550 i-Funnel UHPLC Q-TOF MS, Agilent Technologies). The isolation of *A. baumannii* from wastewater was performed at 42°C/48h on CHROMagar Acinetobacter without or with the addition of commercial supplement CR102 which allows the growth of carbapenem-resistant isolates. Cefsulodin sodium salt hydrate (Sigma-Aldrich) was added at 15 mg/L to suppress the growth of *Pseudomonas* and *Aeromonas* spp. Presumptive A. baumannii colonies were characterized phenotypically (Fig. 1).

Further identification was carried out by using Vitek 2 systems (BioMerieux) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS, Bruker Daltonics) on cell extracts [6]. Antibiotic resistance profiles were determined according to MIC values obtained by Vitek 2 system or E-test and interpreted according to EUCAST criteria [7].



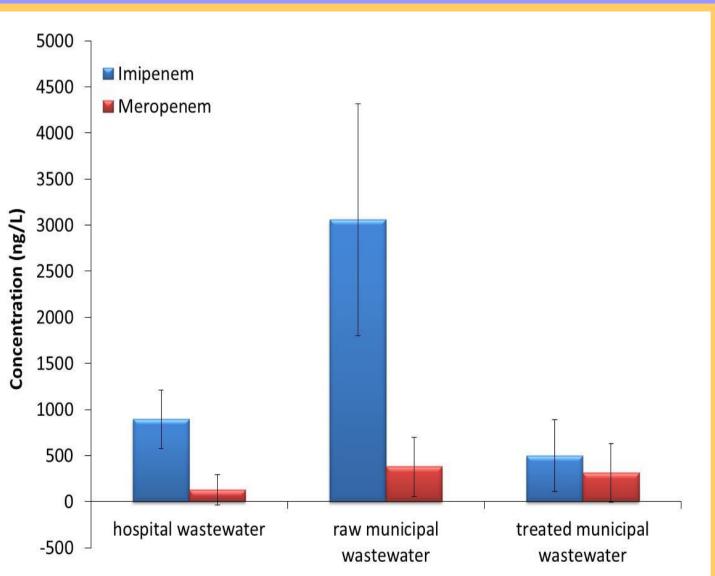
The **aim** of this study was to screen the hospital and municipal wastewater of the City of Zagreb for the presence of viable *A. baumannii* and carbapenems.

**Figure 1:** Presumptive red colonies of *A. baumannii* grown on CHROMagar Acinetobacter phenotypically were Gram negative coccobacilli, with typical negative reaction on the Kligler Iron Agar.

## **Results:**

Hospital and municipal wastewaters contained high concentrations of imipenem and meropenem which averaged: 894 and 129 ng/L in hospital wastewater, 3060 and 380 ng/L in raw and 497 and 311 ng/L in treated municipal wastewater, respectively (Fig. 2).

From hospital wastewater (Table 2), raw and treated municipal wastewater (Table 3) 8, 30 and 7 isolates of *A. baumannii* were recovered, respectively. All isolates from hospital wastewater and majority (33/37) of isolates from municipal wastewater were resistant to carbapenems and majority of tested antibiotics except colistin. The 7 MDR clinical isolates (Table 4) recovered in the same period showed comparable levels of antibiotic resistance to MDR isolates from hospital and municipal wastewater. These suggest that *A. baumannii* is able to survive in environment outside hospitals. However, 4 isolates from raw municipal wastewater were susceptible to carbapenems and other antibiotics. This finding opens the possibility that *A. baumannii* could have a natural habitat in sewage system.


**Table 4:** Date of sampling, origin, MALDI-TOF MS score values, and antibiotic<sup>a</sup> profile of *A. baumannii* clinical isolates.

R - resistant; I - intermediate; S - sensitive according to EUCAST criteria. <sup>a</sup> carbapenems (MEM-meropenem, IMIimipenem), fluoroquinolones (CIP-ciprofloxacin, LVXlevofloxacin), aminoglycosides (TOB-tobramycin, GENgentamicin, AMK-amikacin), SXT- trimethoprim / sulfamethoxazole, CST-colistin.

**Table 2:** Date of sampling, MALDI-TOF MS score values, and antibiotic<sup>a</sup> profile of *A. baumannii* isolates from **hospital wastewater**.

All isolates were determined by Vitek 2 system as *A. calcoaceticus-baumannii* complex. R - resistant; R resistant; I - intermediate; S - sensitive according to EUCAST criteria. <sup>a</sup> carbapenems (MEM-meropenem, IMIimipenem), fluoroquinolones (CIP-ciprofloxacin, LVXlevofloxacin), aminoglycosides (TOB-tobramycin, GENgentamicin, AMK-amikacin), SXT- trimethoprim / sulfamethoxazole, CST-colistin.

| Sampling  | Isolate | MALDI TOF   | Antibiotic profile |     |     |     |     |     |     |     |     |  |  |
|-----------|---------|-------------|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|--|--|
| date      | name    | score value | MEM                | IPM | CIP | LVX | TOB | GEN | АМК | SXT | CST |  |  |
| 27.8.2015 | Š2/1    | 2.045       | R                  | R   | R   | R   | R   | R   | R   | R   | S   |  |  |
|           | Š2/3    | 2.101       | R                  | R   | R   | R   | R   | R   | R   | R   | S   |  |  |
|           | Š1/1    | 2.271       | R                  | R   | R   | R   | R   | R   | R   | R   | S   |  |  |
|           | Š2/5    | 2.067       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |  |  |
| 6.10.2015 | Š2/6    | 2.232       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |  |  |
|           | Š2/7    | 2.102       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |  |  |
|           | Š2/8    | 2.077       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |  |  |
|           | Š2/9    | 2.041       | R                  | R   | R   | R   | R   | R   | S   | R   | S   |  |  |



**Table 3:** Date of sampling of influent or effluent wastewater, MALDI-TOF MS score values, and antibiotic<sup>a</sup> profile of *A. baumannii* isolates from **municipal wastewater**.

Isolates named as IN were isolated from influent wastewater and isolates named as EF were isolated from effluent wastewater. R - resistant; I - intermediate; S - sensitive according to EUCAST criteria. <sup>a</sup> carbapenems (MEM-meropenem, IMI-imipenem), fluoroquinolones (CIP-ciprofloxacin, LVX-levofloxacin), aminoglycosides (TOB-tobramycin, GEN-gentamicin, AMK-amikacin), SXT-trimethoprim / sulfamethoxazole, CST-colistin.

| Sampling   | Isolate | MALDI TOF   | Antibiotic profile |     |     |     |     |     |     |     |     |
|------------|---------|-------------|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| date       | name    | score value | MEM                | IPM | CIP | LVX | тов | GEN | АМК | SXT | CST |
|            | EF1     | 2.262       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |
| 16.4.2014  | EF2     | 2.352       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |
|            | EF3     | 2.329       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |
|            | IN4     | 2.231       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |
|            | IN5     | 2.085       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |
|            | IN6     | 2.157       | R                  | R   | R   | R   | S   | R   | S   | S   | S   |
| 11.6.2014  | IN8     | 2.168       | R                  | R   | R   | R   | S   | R   | S   | S   | S   |
|            | IN9     | 2.167       | R                  | R   | R   | R   | R   | S   | S   | S   | S   |
| -          | IN10    | 2.193       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |
|            | IN11    | 2.409       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |
|            | EF4     | 2.191       | R                  | R   | R   | R   | R   | R   | R   | S   | S   |
|            | EF5     | 2.161       | R                  | R   | R   | R   | R   | R   | R   | S   | S   |
|            | EF6     | 2.219       | R                  | R   | R   | R   | R   | R   | R   | S   | S   |
|            | IN12    | 2.190       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |
|            | IN13    | 2.118       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |
| 29.10.2014 | IN14    | 2.213       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |
|            | IN15    | 2.121       | R                  | R   | R   | R   | S   | R   | S   | S   | S   |
|            | IN16    | 2.244       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |
|            | IN17    | 2.163       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |
|            | IN18    | 2.048       | R                  | R   | R   | R   | R   | R   | S   | S   | S   |
|            | IN19    | 2.090       | R                  | R   | R   | R   | R   | R   | R   | S   | S   |
| 5.11.2014  | IN21    | 2.328       | S                  | S   | S   | S   | S   | S   | S   | S   | S   |
|            | IN22    | 2.118       | R                  | R   | R   | R   | R   | R   | R   | S   | S   |
|            | IN24    | 2.168       | R                  | R   | R   | R   | R   | R   | R   | S   | S   |
| 3.12.2014  | IN25    | 2.041       | R                  | R   | R   | R   | R   | R   | R   | S   | S   |
|            | IN26    | 2.223       | R                  | I   | S   | S   | S   | S   | S   | S   | S   |
|            | IN27    | 2.199       | I                  | S   | S   | S   | S   | S   | S   | S   | S   |
|            | IN28    | 2.085       | R                  | I   | S   | S   | S   | S   | S   | S   | S   |
|            | IN31    | 2.119       | S                  | S   | S   | S   | S   | S   | S   | S   | S   |
|            | IN32    | 2.104       | R                  | R   | R   | R   | R   | R   | R   | R   | S   |
|            | IN33    | 2.180       | R                  | R   | R   | R   | R   | R   | R   | R   | S   |
| 23.9.2015  | IN34    | 2.066       | R                  | R   | R   | R   | R   | R   | R   | S   | S   |
|            | IN35    | 2.164       | R                  | R   | R   | R   | R   | S   | S   | R   | S   |
|            | IN36    | 2.184       | S                  | S   | S   | S   | S   | S   | S   | S   | S   |
|            | IN37    | 2.038       | R                  | R   | R   | R   | R   | R   | R   | S   | S   |
|            | IN38    | 2.075       | R                  | R   | R   | R   | R   | R   | R   | S   | S   |
|            | EF9     | 2.174       | R                  | R   | R   | R   | R   | S   | S   | R   | S   |

| Sampling   | Isolate    | Origin                | MALDI Antibiotic profile |     |     |     |     |     |     |     |     |     |
|------------|------------|-----------------------|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| date       | name       |                       | TOF score<br>value       | MEM | IPM | CIP | LVX | тов | GEN | ΑΜΚ | SXT | CST |
| 11.9.2015  | OB<br>3831 | Sputum                | 2.128                    | R   | R   | R   | R   | R   | R   | S   | R   | S   |
| 18.9.2015  | OB<br>3929 | Tracheal<br>aspirate  | 2.000                    | R   | R   | R   | R   | R   | R   | S   | R   | S   |
|            | OB<br>3930 | Bronchial<br>aspirate | 2.282                    | R   | R   | R   | R   | S   | S   | I   | R   | S   |
| 24.9.2015  | OB<br>4027 | Sputum                | 2.242                    | R   | R   | R   | R   | R   | R   | S   | R   | S   |
| 2.10.2015  | OB<br>4138 | Bronchial<br>aspirate | 2.021                    | R   | R   | R   | R   | R   | R   | S   | S   | S   |
| 20.10.2015 | OB<br>4358 | Bronchial<br>aspirate | 2.194                    | R   | R   | R   | R   | S   | R   | S   | R   | S   |
| 22.10.2015 | OB<br>4402 | Swab of<br>decubitus  | 2.019                    | R   | R   | R   | R   | S   | R   | S   | R   | S   |

## Acknowledgements:

This research was supported by the Croatian Science Foundation (grant no. IP-2014-09-5656) and in a part by the University of Zagreb (grant no. 202751).





Figure 2: Concentrations of imipenem and meropenem in hospital wastewater, raw and treated municipal wastewater.

## **Conclusion:**

- Viable A. baumannii and carbapenems are present in hospital wastewater, as well as in raw and treated municipal wastewater of the City of Zagreb.
- MDR A. baumannii are able to survive in environment outside hospitals: in hospital wastewater, sewage system, as well as in the secondary wastewater treatment system.
- A. baumannii could have a natural habitat in sewage system.

## **References:**

1) Goic-Barisic I. Multidrug-resistant *Acinetobacter baumannii* (MRAB) - ten years after the onset of these isolates in Croatia. Infectol Glasn. 2012; 32(2): 67-70.

2) CAMS. Antibiotic resistance in Croatia, 2014. The Croatian Academy of Medical Sciences, Zagreb, 2015.

3) Ferreira AE, Marchetti DP, De Oliveira LM, Gusatti CS, Fuentefria DB, Corcao G. Presence of OXA-23-producing isolates of *Acinetobacter baumannii* in wastewater from hospitals in southern Brazil. Microb Drug Resist. 2011; 17(2): 221-227.

4) Zhang C, Qiu S, Wang Y, Qi L, Hao R, Liu X, et al. Higher isolation of NDM-1 producing *Acinetobacter baumannii* from the sewage of the hospitals in Beijing. PLoS ONE. 2013; 8(6) :e64857.

5) Hrenovic J, Goic-Barisic, Kazazic S, Kovacic A, Ganjto M, Tonkic M. Carbapenemresistant isolates of *Acinetobacter baumannii* in a municipal wastewater treatment plant, Croatia, 2014. Eurosurveillance. 2016; 21(15): pii=30195.

6) Sousa C, Botelho J, Silva L, Grosso F, Nemec A, Lopes J, et al. MALDI-TOF MS and chemometric based identification of the *Acinetobacter calcoaceticus-Acinetobacter baumannii* complex species. Int J Med Microbiol. 2014; 304: 669-677.

7) European Committee on Antimicrobial Susceptibility Testing. EUCAST Reading guide. Version 4.0. 2014.